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1 Introduction 

Street and coastal flooding are some of today’s most pressing climate risks in New York City, 

and are common occurrences during heavy rainfall events (Solecki, 2012; C. Rosenzweig et al., 

2011) due to reasons varying from the overwhelming of drainage systems (Agonafir et al., 2021) 

to impermeable depressions on streets (Safaei-Moghadam et al., 2023). Street flooding has be-

come a dangerous threat to the residents of New York City due to intensifying storms that have 

overwhelmed drainage systems, basement dwellings, subways, and roads (Agonafir et al., 2021; 

Solecki, 2012). The flooding and failure of drainage systems on September 1, 2021, resulting from 

the 3.47 inch-per-hour rainfall rate left by remnants of Hurricane Ida (Mossel et al., 2024), high-

lighted the dangerous and uneven vulnerabilities of the city’s geography (Blackmore, 2024), gaps 

in its infrastructural sustainability, and need for more effective flood-mitigation infrastructure. 

The New York City Department of Transportation’s Street Design Manual, Third Edition (2020) 

states that increasing permeable space on NYC’s roads “wherever safe and feasible” is a major pri-

ority for improving the current state of drainage and flood resilience across the city (NYC Depart-

ment of Transportation, 2020, p. 250). Flooded roads can be devastating to surface transportation, 

including private vehicles and public transit. Particularly, floods threaten the mobility of residents 

who depend on buses to travel to work, recreation, and essential services like healthcare (Abenayake 

et al., 2022; Chang et al., 2011; Chen et al., 2015; Suarez et al., 2005). Buses are essential to many 

of the 2.3 million residents of Queens (U.S. Census Bureau, 2024), who boarded the borough’s 

bus routes 151,535,451 times in 2023 (Metropolitan Transportation Authority, 2024a). The bus is 

an indispensable mobility tool for many residents, even amid a flood and other extreme weather 

events. 

Recently, the growth of bike-sharing in NYC (branded primarily as Citi Bike) has created the 

opportunity for more bus riders to supplement the the “last mile” of their bus trips with a bike ride 

(Shaheen et al., 2010, p. 159), which may expand the variety of practical destinations to travel to 

by bus (Campbell & Brakewood, 2017). However, despite their utility and new use cases, Queens 

buses have suffered ridership decline in recent years due to low reliability, slowing speeds, and 
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the loss of commuters to other modes of transportation (Metropolitan Transportation Authority, 

2023b). Combined with the nearly 46% drop in ridership during the COVID-19 pandemic, which 

the MTA claims has “slowly continued to recover” (Metropolitan Transportation Authority, 2023b, 

p. 10), measures to repair bus service in Queens have become increasingly essential to its survival 

as an effective mode of transportation. 

The borough of Queens in New York City experienced an exceptional 2,092.03 mm. (about 

82.32 in.) of rainfall over the course of 2023 (NYS Mesonet, 2024). Simultaneously, the borough 

amassed 1,152 citizen reports of street and highway flooding throughout 2023 (NYC311, 2024). 

Many studies have focused on hypothetical or future flooding scenarios through hydraulic modeling 

(Chang et al., 2011; G. Liu et al., 2023; Safaei-Moghadam et al., 2023; Suarez et al., 2005). Yet, the 

exceptional flooding of 2023 gives cause to researching the effects of a past flood on surface public 

transportation networks. This study contributes to the body of literature by illustrating a potential 

association between flooding and transportation, and using citizen-reported data to account for the 

nuances of genuine flooding conditions (Negri et al., 2023; B. R. Rosenzweig et al., 2018). This 

study also addresses the United Nations’ Sustainable Development Goal 11, Sustainable Cities and 

Communities, by investigating the short-term robustness of urban infrastructure to past floods and 

suggesting solutions to improve infrastructure sustainability against long-term climate change. 

This research aims to understand the effects of flooding on the Queens bus system and its riders 

in flood-vulnerable areas. Scripting with R1 and GIS mapping with Esri ArcGIS Pro allows us 

to approach this topic using statistical and spatial analyses. Using precipitation records, NYC311 

street flooding reports, and bus performance metrics from 2023, this project was able to: 

1. Use citizen-reported 311 data to identify areas experiencing the most reported floods in 

Queens during an abnormal flooding season, and; 

2. Measure the extent to which a seasonal change in total flooding locations and their spatial 

distribution impacted bus delays in Queens, in 2023. 
1Multiple R scripts used in this study require the packages dplyr, RSocrata and writexl to run properly. Please 

install these packages before attempting to recreate any processes in R mentioned here. 
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2 Literature Review 

2.1 The state of weather and seasons in Queens, NYC 

As shown in Figure 1, the 1991-2020 climate normals for New York City (NYC) describe a high 

seasonality in temperature and low seasonality in precipitation (NOAA, 2024b). Maximum tem-

peratures peak in the summers and bottom out in the winters, while spring and fall are in close 

proximity near the low-middle of this range. The same pattern holds true for minimum and av-

erage temperatures. Simultaneously, precipitation remains consistent throughout the climate nor-

mals, with a difference of less then 3 inches of snow between any two seasons. Snow is highly 

specific to winters in NYC, with an average of 21.3 inches that no other season nears statistically. 

The stark differences between summers and winters, versus the relative similarities of spring and 

fall, helped me achieve a fairer comparison of seasonal bus and flood data. 

Figure 1. Climate Normals from JFK International Airport weather station, 1991-2020. 

(NOAA, 2024b) 

However, climate normals do not depict the potential of severe weather throughout the seasons. 

A primary concern of this study is recognizing which seasons in 2023 had experienced severe 

weather events (such as flooding) that could have impacted the bus network in Queens. To start 

seeking any possible association, I reviewed weather events that occurred in NYC over the course 

of 2023. 

According to the National Oceanic and Atmospheric Administration (NOAA), New York State 
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(NYS) experienced 7 “Billion-Dollar Disasters,” which are weather events that create damages or 

costs of $1 billion or more (NOAA, 2024a). Of these 7 disasters, 2 were specifically flooding 

events, 4 were severe storms, and 1 was a winter storm. Of these, I could identify both flooding 

events and 1 severe storm as events specifically impacting NYC, by observing whether the event 

increased rainfall (as a percent of the average precipitation amount) over the city. From July 9 to 

July 11, NYS experienced a severe flooding event (NOAA, 2024a) that, according to the National 

Weather Service (NWS), leading to roughly 48 hours of severe flooding conditions in parts of 

southeastern New York. (NWS, 2024a). Flooding also occurred from August 5 to August 8 as part 

of a series of severe weather events over the Northeastern states, contributing to an increase over 

average precipitation over NYC that month (NOAA, 2024a). Finally, in winter 2023, a flooding 

event caused by powerful storms from December 16 to December 18 caused precipitation over 

NYC to exceed average levels by 200-300% (NOAA, 2024a). 

Although not cited by NOAA, the city experienced an air quality alert and a dense smoke ad-

visory on June 7, 2023. This was brought on by northerly winds pushing wildfire smoke from 

Quebec, Canada. (NWS, 2024b). The Air Quality Index was lowered to “Unhealthy” for the area 

(NWS, 2024b) as PM2.5 levels peaked (Thurston et al., 2023), while visibility near JFK Airport 

dropped to less than 2 miles (NWS, 2024b). This dangerous air quality was linked by Thurston 

et al., (2023) to creating a greater number of hospital emergency room visits for residents with 

asthma. The combination of dangerous conditions for traveling outdoors, an increased number of 

vehicles traveling to emergency rooms, and lower surface visibility for ground vehicles (including 

buses) could have made June 7 (and surrounding days) a precarious time for the bus, potentially 

delaying trips and discouraging passengers. 

NOAA does not explicitly cite any notable “Billion Dollar” weather events within the spring 

or fall that affected precipitation in NYC. However, the largest flood of 2023 by total precipitation 

amount happened on September 29, when roughly 8.16 inches of inundation fell over Queens (NYS 

Mesonet, 2024) causing extensively-documented destruction and detrimental effects to New York-

ers’ lives (Blackmore, 2024; Offenhartz et al., 2023). NOAA recorded 3 “Billion Dollar” weather 
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events in spring 2023. However, none of these caused above-average precipitation levels in the 

city, and therefore they are not credited for any severe flooding events there (NOAA, 2024a). 

2.2 Using 311 data for flood impact applications 

To accomplish this study, one of my earliest considerations was to use 311 reports as a proxy repre-

sentation of street inundation during flood events. This would ideally allow areas highly impacted 

areas by flooding, down to street-level locations (and thus, individual bus routes too), to be identi-

fied. 

One database of location-precise street flooding reports in NYC is aggregated by NYC311. 

NYC311 is an official service that allows residents to report various issues and concerns (mostly 

regarding city government-provided services) to the departments responsible for managing and 

mitigating them. The methodology adopted in this study pulls from Agonafir et al. (2022), which 

set out to identify whether NYC311 complaints and precipitation data could be used in tandem to 

accurately predict the spatial concentration of flooding in NYC (Agonafir et al., 2021). Agonafir 

et al. (2022) states that urban areas in the U.S. are disproportionately damaged by storm activity, 

in large part due to the percent of surface area that is impermeable in cities. However, this impact 

can vary on a per-street basis, which previous studies have encountered difficulty establishing. 

Often it is elevation, slope, the hyperlocal condition of drainage systems (Agonafir et al., 2021), or 

the design of surrounding buildings and infrastructure (Bulti & Abebe, 2020) which create these 

nuances. The NYC government claims its sewer system “typically has the capacity to handle 1.75 

inches of rain per hour,” (NYC Recovery, 2024) which storms like those of September 1, 2021 and 

September 29, 2023 have exceeded by their hourly rainfall rate. 

However, Agonafir et al. presents the advantage of using NYC311 to pinpoint flooding, as 

311 data is inherently local (Agonafir et al., 2021). Due to the broad accessibility of smartphones, 

computers, and social media, all of which NYC311 accepts reports through, citizen-reported data 

can now inform a comprehensive, borough-wide flood reporting study (Agonafir et al., 2021). The 

study collected precipitation data and 311 reports of street flooding, sewer backups, clogged catch 
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basins, and manhole overflows from 2010-2019. Then, the data was summarized by week, and a 

correlation analysis was run for each NYC ZIP code. This process found that precipitation was 

“the primary driver of street flooding,” being the most significant explanatory variable to flooding 

in 93% of Queens zip codes (Agonafir et al., 2021, p. 8). The findings state that “in the majority 

of NYC ZIP codes, the SF [street flooding] reports are consistent with and heavily affected by rain 

events,” and that street flooding reports were more closely associated with precipitation than any 

of the other 311 report types studied (Agonafir et al., 2021, p. 6). 

NYC311 data has been used in other studies about urban flooding (Dixon et al., 2021; B. Smith 

& Rodriguez, 2017; Negri et al., 2023). Like Agonafir et al. (2021), Negri et al. (2023) successfully 

established that NYC311 flooding reports reflect street flooding risk with a Pearson coefficient p 

of 0.56, reflecting moderate correlation. Other 311 studies have encouraged precautions to avoid 

the bias stemming from uneven reporting rates across the city. Homeownership rates, property 

values, race, and median income per capita have been suggested to skew these rates towards specific 

neighborhoods (Agostini et al., 2024; He, 2023; Kontokosta & Hong, 2021; Z. Liu et al., 2024; 

Minkoff, 2016). As these statistics differ broadly across Queens, it was crucial that this study 

incorporated a methodology to reduce reporting bias as much as possible. 

Informed by Chen (2015), Rosenzweig (2011), and Solecki (2012)’s emphasis on increased 

flooding risks in coastal areas, I hypothesized that while NYC311 flood report data would show 

increased street flooding across all of Queens, flood locations will be primarily concentrated within 

communities in the borough’s low-lying coastal neighborhoods due to the risk of inundation brought 

by extreme rainfall events. This would particularly include areas along the East River, the Long 

Island Sound, and Jamaica Bay. For example, the Rockaways (CD 14) are a low-lying sandy 

peninsula along Jamaica Bay that would be prone to a greater flood risk than Rego Park (CD 6), an 

inland neighborhood. 
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2.3 The state of buses in Queens, NYC 

In 2023, 151,535,451 boardings were recorded on bus routes primarily serving Queens (Metropolitan 

Transportation Authority, 2024a). According to the Metropolitan Transportation Authority (MTA), 

which is responsible for public bus operations in NYC, 52% of residents in the borough ride public 

transportation everyday (Metropolitan Transportation Authority, 2023b). Split evenly among these 

residents, this averages to about 123 boardings taken per person for the year. Especially in the south-

ern and eastern parts of the borough, where subway lines and stops are scarce (Metropolitan Trans-

portation Authority, 2024e), local commutes that go beyond walking distance are served either a 

car (which not all residents have the desire, ability, or finances to own or hire), a bike/scooter/other 

personal mobility device (also limited by ability and finances), or riding the bus. The Long Island 

Rail Road supplements the lack of subway access by providing transportation from parts of south-

ern and eastern Queens to limited destinations west (towards Manhattan) or east (towards Long 

Island). However, for most people, the bus is likely more cost-effective per ride than an LIRR 

fare (which is $4.25 at its lowest for traveling within “Zone 3,” or destinations between Jamaica 

and the eastern border of Queens) or committing to the purchase and maintenance of a car or other 

mobility device. MTA buses are more optimized than the LIRR for local stops, and only cost $2.90 

for one ride, which can be decreased with subsidized fares, passes, and fare capping (Metropolitan 

Transportation Authority, 2024c). 

According to the MTA, which plans and operates the bus network, Queens is served by 110 bus 

routes which have had statistics about their passenger totals, delays, and other metrics uploaded 

to NYS’s Open Data portal (Metropolitan Transportation Authority, 2023a). This data is split up 

into two time-based fare periods: the “Peak” period (which includes data recorded between 7:00 

AM to 9:00 AM and 4:00 PM to 7:00 PM) and the “Off-Peak” period (which is all other data 

recorded outside of the Peak period) (Metropolitan Transportation Authority, 2023a). The MTA 

uses Peak and Off-Peak labels in their data collection, scheduling, and fare pricing for some modes 

of transportation (Metropolitan Transportation Authority, 2024c) because the agency associates 

specific time frames with “weekday rush hours” in NYC (Metropolitan Transportation Authority, 
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2024d). 

The time-based fare period “has its roots in congestion pricing on urban freeways,” as “dur-

ing the peak [of traffic], when highways are congested, every additional user creates a demand 

for additional space.” (M. Smith, 2009, p. 26). The relevance of time-based fare periods to NYC 

buses is demonstrated by the MTA’s pursuit of new congestion pricing policies in Manhattan’s Cen-

tral Business District (CBD), also known as the “Congestion Relief Zone” from 60th Street south 

(Metropolitan Transportation Authority, 2024b). Roughly 700,000 vehicles enter the CBD across 

weekday mornings and evenings, creating exceptional congestion in this timeframe (Metropolitan 

Transportation Authority, 2024b). When it takes effect in January 2025, congestion pricing will 

charge passenger vehicle drivers entering the CBD from 5:00 AM to 9:00 PM on weekdays, and 

9:00 AM to 9:00 PM on weekends (Metropolitan Transportation Authority, 2024g). Since this time 

range includes the previously-defined Peak period for MTA buses, we can assume that Peak period 

buses entering or leaving the CBD will be affected by congestion pricing’s impact on traffic. 

The Queens bus network is currently in the planning phase of a major redesign conducted by 

the MTA (Metropolitan Transportation Authority, 2023b). The redesign was initiated in 2019 to 

address four key priority areas that the current bus network must improve in: “Reliable Service,” 

“Faster Travel,” “Better Connections,” and “Simplified Service” (Metropolitan Transportation Au-

thority, 2023b). These are crucial priorities considering some of the most pressing issues of the bus 

network. The average speed of a Queens bus in 2019 was 8.7 miles per hour, which had decreased 

from 4 years prior (at 9.0 MPH) (Metropolitan Transportation Authority, 2023b). Ridership had 

declined by 5.3% from 2014 to 2019, while on-time performance decreased by 12% overall from 

2014 to 2018 (Metropolitan Transportation Authority, 2023b). To improve upon these metrics, the 

MTA claims in its redesign report that it seeks to “make it easier to travel by bus,” “expand acces-

sibility,” and “improve transit equity” in Queens-Brooklyn corridors (Metropolitan Transportation 

Authority, 2023b, p. 22-23). 
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2.4 Evaluating bus transportation against the landscape of floods 

Regarding the MTA’s bus redesign plans, I noticed while reading it that there is a complete lack 

of mention of flooding or climate change in the redesign document’s outline of problems and solu-

tions. In the document, there are no mentions of the terms “rain,” “flood,” “flooding,” “climate,” 

and “climate change,” while “congestion” is mentioned 7 times and “traffic” is mentioned 20 times 

(Metropolitan Transportation Authority, 2023b p. 6-73). The lack of emphasis on flooding and 

severe weather events contrasts research showing that severe weather events can cause transporta-

tion delays and trip loss (Suarez et al., 2005), operational costs to public transit agencies (Chang et 

al., 2011), transit accessibility (Chen et al., 2015), transit demand (Singhal et al., 2014), and even 

system-wide transportation system failure (Abenayake et al., 2022). 

The above studies raise several reasons for concern that 2023 flooding in NYC may have been 

significantly detrimental to the bus network and bus passengers. Chang et al. (2011) established that 

of all climate impacts, urban flooding had produced the highest negative impact on transportation 

by total cost -linking back to flooding events in NYC from as early as 2004 and 2007 (Chang et al., 

2011). Abenayake et al. (2022) highlights how global climate change has propelled increases in 

the frequency and intensity of urban flooding, making road network resilience “a local and global 

imperative in recent years” yet “an under-explored branch of urban resilience.” (Abenayake et 

al., 2022) A city’s surface transportation network is inherently affected by the condition of its 

overall road network (Abenayake et al., 2022) due to factors like rising water tables (Chang et 

al., 2011), which are particularly detrimental to low-lying and coastal areas (Chen et al., 2015). 

Considering these sources, a disruption to bus services in Queens could make trips to essential 

destinations (including but not limited to home, work, childcare, eldercare, grocery stores, and 

healthcare facilities) significantly more difficult without accessible alternatives for riders. 

While many studies focus on future risk or computer models of hypothetical flooding (Chang et 

al., 2011; G. Liu et al., 2023; Safaei-Moghadam et al., 2023; Suarez et al., 2005), other studies argue 

that these models do not always account for the nuances of genuine flooding conditions (Negri et 

al., 2023; B. R. Rosenzweig et al., 2018). Negri et al. (2023) highlights how one stormwater flood 
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model for NYC “assumed a uniform rainfall intensity, while in reality, intensity varies spatially and 

temporally,” (p. 4) while Rosenzweig et al. (2018) mentions that well-accepted models like the 

NWS’s Flash Flood Guidance are not as accurate to highly urbanized places as they are to rural 

areas. 

There are several benefits to analyzing the real-world data and effects of past flooding events. 

First, this will provide more accurate flooding data than a simulation. Second, the impact of street 

flooding on city infrastructure and services in 2023 is well-documented, including halted traffic 

(Offenhartz et al., 2023). Third, we have extensive rainfall data, citizen reports, and bus perfor-

mance metrics that will make a comprehensive study possible and worthwhile. 

Based on these findings, I chose to seek a seasonal association between flooding and one trans-

portation metric that tends to significantly affect the average passenger’s daily experience on the 

bus. From the MTA’s open data catalog, I selected Customer Journey Time Performance (CJTP; 

also referred to here as bus on-time performance, bus delays, or bus timeliness) for this purpose. 

CJTP is defined as the percent of bus rides that are completed within 5 minutes of a customer’s 

scheduled arrival time at their destination (Metropolitan Transportation Authority, 2023a), which 

is a statistical identifier of whether bus service is meeting the priorities of the MTA: Reliable Ser-

vice (as reliability depends on moving passengers from their origins to their destinations on-time), 

Faster Travel (a trip arriving on-time signifies that the trip was not delayed), and Better Connec-

tions (passengers on a delayed bus are more likely to miss any connecting buses they might need 

to board). I hypothesized that the number of unique flooding locations and the median CJTP will 

be negatively associated, so that as flooding increases (in one CD or overall), median CJTP will 

decrease. 
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2.5 Dividing the neighborhood: Using Community Districts to summarize 

and compare statistics 

NYC’s Community Districts (CDs) are well-defined, consistent political boundaries that aggre-

gate several neighborhoods into districts that are used for legislative and planning purposes (NYC 

Department of City Planning, 2024b). They are drawn along roadway boundaries making them 

practical for analyzing surface transportation. All CD boundaries and demographic data can be 

viewed at https://communityprofiles.planning.nyc.gov. 

Initially because of these factors, I approached CDs as analysis zones for summarizing flood-

ing and bus data. Then, upon comparing CDs with neighborhood boundaries, Census tracts, and 

Transportation Analysis Zones (TAZs), I found more benefits to using CDs for this study than any 

other tool for analyzing multiple communities. 

Table 1 

Queens Community Districts and sample neighborhoods. 
Community District (CD) Sample Neighborhoods 

1 Astoria, Queensbridge, Long Island City 
2 Hunters Point, Long Island City, Woodside 
3 East Elmhurst, Jackson Heights, North Corona 
4 Corona, Corona Heights, Lefrak City 
5 Glendale, Maspeth, Middle Village 
6 Forest Hills, Rego Park 
7 Bay Terrace, College Point, Flushing 
8 Fresh Meadows, Holliswood, Jamaica 
9 Kew Gardens, Ozone Park, Richmond Hill 
10 Howard Beach, Lindenwood, Ozone Park 
11 Auburndale, Bayside, Douglaston 
12 Hollis, Jamaica, North Springfield Gardens 
13 Bellaire, Bellerose, Queens Village, Rosedale 
14 The Rockaways 

(NYC Department of City Planning, 2024b) 

While many neighborhoods in NYC are named and well-known, their boundaries are often 

subjective—residents often have different perceptions of their neighborhood’s boundaries (Coulton 
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et al., 2001). This would make an objective statistical comparison between neighborhoods difficult 

or impossible. Considering the findings of Agostini et. al. (2024), Kontokosta & Hong (2021), 

and others who researched bias in NYC311 reporting, basing this study’s findings on data within 

neighborhood boundaries would also risk skewing results towards neighborhoods with higher rates 

of 311 reporting. The use of CDs as analysis zones remedies this by having discrete number labels 

and boundaries, while aggregating multiple neighborhoods that may have different reporting rates 

into one statistical set. 

A common practice among transportation studies is the use of Transportation Analysis Zones 

(TAZs) to divide an urban area into “mutually exclusive and exhaustive zones” (Suarez et al., 2005, 

p. 235) in which metrics with relevance to transportation are aggregated (Chang et al., 2011). 

Instead of TAZs, several 311 studies use Census tracts to aggregate their data (Agonafir et al., 

2021; Agostini et al., 2024; Kontokosta & Hong, 2021; Z. Liu et al., 2024; Minkoff, 2016.) 

Figure 2. Transportation Analysis Zones for NYC, 2012-2040, as proposed by the New York 

Metropolitan Transportation Council. 

(New York Metropolitan Transportation Council, 2012) 
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Figure 3. Census tracts across Queens and Brooklyn. 

(NYC Department of City Planning, 2024d) 

These tools are valid methods of aggregating data on a large-scale in NYC, but not the most 

representative of Queens communities. First, the polygon boundaries of TAZs appear idiosyncratic, 

as TAZs are not widely recognized by community members, as opposed to CDs which see greater 

recognition. Second, TAZs and Census tracts in NYC are notably smaller than CDs by area and 

population; for example, tracts are designed to include 2,500 to 8,000 residents within their borders 

(Lamacchia, 1994), but the median resident population of a CD in Queens is 169,790.2 (NYC 

Department of City Planning, 2024d). The relatively small population that data within a single 

tract or TAZ applies to causes me to question their usefulness in drawing conclusions from data, 

when CD data applies to many more residents. Third, small-area analysis zones by area may also 

result in zones with no 311 or bus data, which would complicate my analysis. The large area of 

CDs increases the likelihood that each CD will include a sufficient amount of 311 and bus data to 

analyze. 
2Based on the 2020 U.S. Census, which is the latest demographic data aggregated by Community District on the 

NYC Population FactFinder website. 
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3 Methodology 

3.1 Precipitation analysis and selecting a study time frame 

To address the research questions of this study, it was essential to establish a control season with 

relatively typical conditions for NYC’s climate and an experimental season with abnormal flooding 

conditions. In the literature review, I examined some case studies of extreme weather events in 2023 

and which seasons they occurred in. Here, I describe the statistical analysis involved in choosing 

an experimental and control season. 

It is important to note the statistically low seasonality of precipitation in New York City, which 

generally makes precipitation levels consistent throughout the year (NOAA, 2024b). fall 2023 

represents an exception to this trend and illustrates how rainfall can be consistent while extreme 

weather is not. However, through examining precipitation and case studies I identified reasons 

to avoid comparing two opposing climate extremes with each other—for example, comparing fall 

2023 (the wettest season of the year by total precipitation, at 675.2 mm.) (NYS Mesonet, 2024) and 

the driest season of the year, based on total precipitation alone. If extremes were to be compared 

by this metric, winter was the driest season of 2023 (at 468.5 mm.) (NYS Mesonet, 2024) and 

thus would be the ideal candidate to compare against fall. However, the flooding in mid-December 

2023 (NOAA, 2024a) was an abnormal weather event that could skew data for the control season, 

so winter was excluded from the comparison. I also ruled out summer 2023, the third driest season 

of the year (at 478.8 mm.) (NYS Mesonet, 2024). Despite its relative closeness in total rainfall to 

winter (with only 10.3 mm. more precipitation), the period of poor air quality in June 2023 due to 

a wildfire event (NWS, 2024b; Thurston et al., 2023) and two events experienced by southern New 

York that July and August (NOAA, 2024a; NWS, 2024a) outlined could also create extraneous 

influence on that season’s bus ridership and bus data. 

After this preliminary research into seasonality, I opted to analyze how the highest rainfall days 

of 2023 were distributed between the four seasons. For my approach, I wrote an R script to identify 

the amount of rainfall recorded for each day in 2023 and then calculate the 90th percentile of rainfall 
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totals. I used the 90th percentile as a landmark for storm size based on the NYC Department of 

Environmental Protection Stormwater Manual’s use of this as the designation of a “small storm 

event” for the city’s drainage system. (NYC Department of Environmental Protection, 2024b, p. 

2-13) 

rainfallDaily <- rainfall_YMDSort %>% 

group_by(Y,M,D) %>% 

filter(Y==23) %>% 

summarise(sum_mm = sum(precip_1hr_max..mm.)) 

rainfallDailyAmts <- rainfallDaily$sum_mm 

rainfallDailyPercntl <- quantile(rainfallDailyAmts, probs = c(0.9), na.rm=TRUE) 

print(rainfallDailyPercntl) 

Printing rainfallDailyPercntl output a 90th percentile rainfall total of 17.382 mm. There were 

36 days in 2023 within the 90th percentile. I categorized each of these days by meteorological 

season to understand which seasons experienced the highest and lowest number of statistically 

substantial rainfall days. This process placed fall 2023 at the highest end with 13 substantial rainfall 

days (36.11% of all substantial rainfall days) and spring 2023 at the lowest end with only 6 days 

(16.67%). This provides empirical evidence for considering fall 2023 as the abnormal flooding 

season in this study, and spring 2023 as the drier control season. 

Following the logic outlined above, I chose spring 2023 as the control season. Spring saw 

469.7 mm. of precipitation, which was 69.6% of equivalent precipitation in the fall, and no major 

flooding events in NYC. 
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Table 2 

Comparing 2023 meteorological seasons by precipitation sums and notable extreme weather 
events. 

Season Precipitation (mm.) Notable weather events 90th percentile 
days 

Winter 2023 
Spring 2023 

468.5 
469.7 

1 flood (Dec 16-18) 
No NOAA-recognized 

7 days 
6 days 

events 
Summer 2023 

Fall 2023 

478.7 

675.2 

1 flood, 1 severe storm, 1 
extreme air quality event 
Heavy rainfall (Sept 29) 

10 days 

13 days 

(NYS Mesonet, 2024; NOAA, 2024a; NWS, 2024b) 

Precipitation data was provided courtesy of New York State Mesonet, which provides “high-

quality weather data at high spatial and temporal scales,” including precipitation data, from multiple 

weather stations around NYS (Brotzge et al., 2020, p. 1827). Mesonet’s dataset provided hourly 

amounts of precipitation from January 1 to December 31, 2023, as recorded by the Queens weather 

station (located in the neighborhood of Pomonok, roughly between JFK International Airport and 

LaGuardia Airport) (NYS Mesonet, 2024). This data was ingested into the R data frame rainfall. 

Then, using the R script below, I made the records sortable by year and month independently, then 

filtered total seasonal precipitation from this dataset for spring (see Table 2). 

# Adding year/month/day labels to hourly data for filtering purposes 

rainfall_YMDSort <- rainfall %>% 

mutate(Y = substring(rainfall$time_end,3,4), 

M = substring(rainfall$time_end,6,7), 

D = substring(rainfall$time_end,9,10)) 

# Filtering hourly data to only entries for March (03), April (04), and May (05) 

rainfall_0323 <- rainfall_YMDSort %>% 

filter(Y==23) %>% 

filter(M=="03") 
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rainfall_0423 <- rainfall_YMDSort %>% 

filter(Y==23) %>% 

filter(M=="04") 

rainfall_0523 <- rainfall_YMDSort %>% 

filter(Y==23) %>% 

filter(M=="05") 

# Binding months into one spring 2023 data frame 

rainfall_Spring23 <- rbind(rainfall_0323, rainfall_0423, rainfall_0523) 

# Calculating precipitation sum for spring 

rainfall_Spr_SUM <- rainfall_Spring23 %>% 

summarise(sum_mm = sum(precip_1hr_max..mm., na.rm=TRUE)) 

Table 3 

Output for rainfall_Spr_SUM from R script. 
summm 

469.66 

I also ran this code on the months of September, October, and November for fall, then bound and 

summarized into a rainfall_Fall23 data frame (see result in Table 3). The modifier na.rm=TRUE 

was added to the summarise command in order to remove null values: hours where no value for rain-

fall was recorded. Note that records with a precipitation amount of zero were kept in the database; 

this only applies to true null values. This command removed 4 hourly records from spring (all on 

April 17), and 4 hourly records from fall (all on November 14). 

Table 4 

Output for rainfall_Fall_SUM from R script. 
summm 

675.22 
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3.2 Importing CDs and the Queens bus network 

With the study time frame selection and rainfall analysis completed, I then acquired, aggregated, 

and imported the relevant spatial data into GIS software (ArcGIS Pro). 

I created a new map in ArcGIS Pro using the Long Island State Plane projection, and added 

a vector layer of all New York City CDs (NYC Department of City Planning, 2024c) above the 

basemap. To only show CDs within the boundaries of Queens while excluding bodies of water, I 

added New York City’s Neighborhood Tabulation Areas (NTAs) (NYC Department of City Plan-

ning, 2024a) on a new layer, which only features NYC’s land area. I selected only Queens NTAs 

(where the boro_name field equaled Queens) and clipped those NTAs into a separate layer via the 

Layer from Selection tool. I then clipped the CDs layer to the newly created Queens-only NTAs 

layer, and converted the output to the North American Datum of 1983. 

NYC DCP’s Community Districts data also includes Joint Interest Areas (JIAs), which are 

generally large parks or airports (LaGuardia or JFK International). Since JIAs are not residential 

areas, their in-depth analysis is not directly relevant to this research. Thus, the maps depicting 

CDs in this project do not label or show statistics for the JIAs, although they are still included with 

a white cross-stitched pattern. All 14 Queens CDs were labeled with their official number, which 

remained on during my analysis to observe changes in flooding and bus data between specific CDs. 

Next, I added bus routes and stops to the project using 3 MTA-provided General Transit Feed 

Specification (GTFS) for Queens, Brooklyn, and MTA Bus Company routes (Metropolitan Trans-

portation Authority, 2024f). I converted bus routes in the 3 “shapes.txt” files to polylines using the 

ArcGIS GTFS Shapes to Features geoprocessing tool, then merged all into one layer. The stops in 

all 3 “stops.txt” files, accordingly, were converted to points using the GTFS Stops to Features tool 

and merged into the “QRoutes” layer. 

Unaltered routes from the GTFS data are split into several segments and not recognized by 

ArcGIS Pro as unified lines. To amend this, I used the Create Routes tool to join the polyline 

segments, which simplified later analysis. 
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Figure 4. Queens Community Districts with labels. JIAs are cross-hatched and airports in Queens 

are labeled. 

3.3 Aggregating and mapping 311 data 

On April 17, 2024, I downloaded 776,871 NYC311 records from the NYC Open Data portal, fil-

tering for reports that originated in Queens and had a Created Date between January 1, 2023 at 

12:00:00 AM and December 31, 2023 at 11:59:59 PM. These filters were set using NYC Open 

Data’s online querying tool to improve processing time and shrink overall file size. 
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Each NYC311 record includes a Descriptor field that briefly describes the reported issue. 

NYC311 offers four labels in its dataset that describe street flooding: “Highway Flooding (SH),” 

and “Flooding on Highway,” which apply to floods reported on major public roads such as express-

ways and freeways, and “Street Flooding (SJ)” and “Flooding on Street,” which apply to all other 

types of roads. (NYC311, 2024). 3 

These reports are filed under the responsibility of the NYC Department of Environmental Pro-

tection (DEP). Considering these facts, I wrote an R script to filter this dataset only by instances of 

reports filed to the DEP with the above descriptors: 

reports311 <- read.csv("/[Directory]/311_20240417.csv") 

rep_floods <- reports311 %>% 

filter(Agency.Name=="Department of Transportation" | 

Agency.Name=="Department of Environmental Protection") %>% 

filter(Descriptor=="Highway Flooding (SH)" | 

Descriptor=="Street Flooding (SJ)" | 

Descriptor=="Flooding on Highway" | 

Descriptor=="Flooding on Street") %>% 

rep_floods <- rep_floods %>% 

mutate(Y = substring(rep_floods$Created.Date,9,10), 

M = substring(rep_floods$Created.Date,1,2), 

D = substring(rep_floods$Created.Date,4,5)) 

write_xlsx(rep_floods, "/[Directory]/FloodReports.xlsx") 

I then used the filtering tools in Microsoft Excel to separate data in the spring and fall time frames 

into separate seasonal databases, and calculated the sum of flooding reports in each season (see 

3From here on, I refer to the former two labels as “street flooding” and the latter two labels as “highway flooding”. 
Notably, reports labeled as “Flooding on Street” or “Flooding on Highway” are only present in the fall dataset (NYC311, 
2024). 
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Table 5). 

Potential bias in 311 reporting can create a disproportionate raw number of reports, including 

repeat reports, in different locations across a city (Agostini et al., 2024; He, 2023; Kontokosta 

& Hong, 2021; Z. Liu et al., 2024; Minkoff, 2016). To reduce the skew that the raw number of 

reports could have on distribution (for instance, one instance of flooding in one location being 

reported multiple times), I took the approach of analyzing and mapping only unique locations of 

311 flooding reports through spring and fall. This approach was also followed by Agonafir et al. 

(2021). The result of this processing is a reduction of 45 reports in the spring (16.24% of that 

season’s total reports) and 277 reports in the fall (45.41% of the seasonal total), but all locations 

where floods were reported in either season were kept intact. While the reason that duplicate-

location reports made up a significant share of fall 2023 reports is somewhat unknown, I assume 

it is because flooding was far more severe during that fall, causing an excess of reporting from 

affected citizens. 

While this method does not entirely rule out location-based bias and an effect on my analysis 

(for example, a coastal neighborhood that experiences frequent floods having lower reporting rates 

overall than neighborhoods that flood less often), it helps to prevent the statistical severity of floods 

from being skewed by abnormally high or low reporting rates. 

Table 5 

Total reports of street and highway flooding by season, before removing duplicate and null loca-
tions. 
Season Total Flooding Reports 

Spring 277 
Fall 610 

Table 6 

Unique locations of street and highway flooding reports by season and month. 
Season Total Unique Locations of Flooding Reports 

Spring 232 
Fall 333 
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Within both seasons’ datasets, I removed duplicate locations with the Remove Duplicates fea-

ture in Excel.4 This tool allows rows in a spreadsheet to be deleted when two or more duplicate 

values are detected in one or more columns. I used this tool to detect and automatically remove re-

ports that duplicated the latitude and longitude of another report (while keeping one report with the 

same coordinates in tact). I then repeated this process using the Incident.Address field. Since not 

all reports had their latitude and longitude or address logged, these steps caught a significant num-

ber of duplicates but not all. To remove the remaining few, I used conditional formatting rules to 

highlight duplicate values in the X.Coordinate..State.Plane. and Y.Coordinate..State.Plane. fields, 

and deleted any duplicates found. Among deleted 311 reports, 1 duplicate point in the spring was 

manually removed from the neighborhood of Sunnyside despite not being detected by the Remove 

Duplicates feature. Additionally, 1 duplicate point in the fall was manually removed from the 

neighborhood of Whitestone for the same reason. 

The spreadsheets with unique flooding locations were then plotted in ArcGIS using their X-

and Y-coordinate (State Plane) fields as two separate point data layers: one for locations in the 

spring and one for locations in the fall. The final plotted 311 dataset includes a marginal number 

of locations counted within one of Queens’ handful of JIAs, rather than CDs. This amounts to 3 

locations in the fall and 1 location in the spring. Excluding these points, the 311 location totals are 

232 for the spring and 333 for the fall. Since some flood locations lie on the boundary between 

a JIA and a CD, or are in a JIA but include a residential address in their metadata, I opted not to 

exclude them from total location counts for the sake of data integrity. 

Next, I utilized the Summarize Within geoprocessing tool to calculate the sum of unique flood-

ing locations per season within each of Queens’ CDs. This was a prerequisite for the process of 

associating the bus CJTP metric with flooding locations later on. The tool’s output created a CD 

layer that could be symbolized by the sum of 311 locations per CD (see Figure 6). 
4Note that some of the same flooding locations exist across spring and fall. This is to ensure an accurate distribution 

of flood locations within each season. 
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3.4 Aggregating and mapping Bus On-Time Performance data 

On March 27, 2024, I downloaded the latest version of the MTA Bus Customer Journey-Focused 

Metrics: Beginning 2020 dataset from the State of New York open data portal. With an R script, I 

filtered down the records to only those from spring and fall 2023 with a borough value of “Queens”: 

buses <- read.csv("/[Directory]/CJTP_20240327.csv") 

buses_YMDSort <- buses %>% 

mutate(Y = substring(buses$month,3,4), 

M = substring(buses$month,6,7)) 

buses_Q <- buses_YMDSort %>% 

filter(borough=="Queens") %>% 

filter(Y==23) 

# Spring: 

# Filter to spring 

cjtp_0323 <- buses_Q %>% 

filter(M=="03") 

cjtp_0423 <- buses_Q %>% 

filter(M=="04") 

cjtp_0523 <- buses_Q %>% 

filter(M=="05") 

# Fall: 

# Filter to fall 

cjtp_0923 <- buses_Q %>% 

filter(M=="09") 
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cjtp_1023 <- buses_Q %>% 

filter(M=="10") 

cjtp_1123 <- buses_Q %>% 

filter(M=="11") 

Since Customer Journey-Focused Metrics are divided into Peak and Off-Peak periods, I was then 

able to use a filter to separate data for each month into these respective periods, and start adding 

statistics to include in the resulting data frame. An example is shown below, using Peak data 

(pk_09) and Off-Peak data (op_09) from September, but the same process was repeated for all 

spring and fall months. 

# September 2023 Peak 

pk_09 <- cjtp_0923 %>% 

filter(period=="Peak") %>% 

summarize(mean_CJTP = mean(customer_journey_time_performance), 

median_CJTP = median(customer_journey_time_performance), 

min_CJTP = min(customer_journey_time_performance), 

max_CJTP = max(customer_journey_time_performance), 

mean_cust = mean(number_of_customers), 

median_cust = median(number_of_customers) %>% 

mutate(Month = "09", 

Period = "P") 

# September 2023 Off-Peak 

op_09 <- cjtp_0923 %>% 

filter(period=="Off-Peak") %>% 

summarize(mean_CJTP = mean(customer_journey_time_performance), 

median_CJTP = median(customer_journey_time_performance), 

min_CJTP = min(customer_journey_time_performance), 

max_CJTP = max(customer_journey_time_performance), 
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mean_cust = mean(number_of_customers), 

median_cust = median(number_of_customers) %>% 

mutate(Month = "09", 

Period = "OP") 

After repeating this process for each study month (as well as February 2023 and August 2023 

for contextual purposes), I bound all the resulting data frames into one data frame, “MonthsOnly”: 

MonthsOnly <- rbind(pk_08, op_08, pk_09, pk_10, pk_11, pk_03, pk_04, pk_05, 

op_09, op_10, op_11, pk_02, op_02, op_03, op_04, op_05) 

I again used the rbind and filter functions to bind data from March, April, and May into a spring 

CJTP dataset, and September, October, and November into a fall CJTP dataset. Here, the group_by 

function is also used to calculate the statistics for one route over the course of three months, creating 

mean, median, minimum, and maximum data across an entire season instead of separate months. 

The example below depicts this process applied to fall data, Peak and Off-Peak: 

CJTP_Fall <- rbind(cjtp_0923, cjtp_1023, cjtp_1123) 

# Filter to peak 

CJTP_Fall_P <- CJTP_Fall %>% 

filter(period=="Peak") 

# Merge months --> 1 season 

CJTP_Fall_P_Merged <- CJTP_Fall_P %>% 

group_by(route_id) %>% 

summarize(mean_CJTP = mean(customer_journey_time_performance), 

median_CJTP = median(customer_journey_time_performance), 

min_CJTP = min(customer_journey_time_performance), 

max_CJTP = max(customer_journey_time_performance)) 

# Filter to Off-Peak, keep months separate 
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CJTP_Fall_OP <- CJTP_Fall %>% 

filter(period=="Off-Peak") 

# Merge months --> 1 season 

CJTP_Fall_OP_Merged <- CJTP_Fall_OP %>% 

group_by(route_id) %>% 

summarize(mean_CJTP = mean(customer_journey_time_performance), 

median_CJTP = median(customer_journey_time_performance), 

min_CJTP = min(customer_journey_time_performance), 

max_CJTP = max(customer_journey_time_performance)) 

Table 7 

Custom datasets exported for analysis using writexl. 
Dataset Name Description 

CJTP_Spr_P_Merged CJTP aggregates per route for spring (Peak period) 
CJTP_Spr_OP_Merged CJTP aggregates per route for spring (Off-Peak period) 
CJTP_Fall_P_Merged CJTP aggregates per route for fall (Peak period) 

CJTP_Fall_OP_Merged CJTP aggregates per route for fall (Off-Peak period) 
MonthsOnly Separated Customer Metrics for study months, February, 

and August 

The median CJTP of fall and spring combined, by fare period, was then captured using this 

script: 

CJTP_P_Stats <- rbind(CJTP_Fall_P,CJTP_Spr_P) 

CJTP_P_Stats <- CJTP_P_Stats %>% 

summarize(median_CJTP = median(customer_journey_time_performance)) 

CJTP_OP_Stats <- rbind(CJTP_Fall_OP,CJTP_Spr_OP) 

CJTP_OP_Stats <- CJTP_OP_Stats %>% 

summarize(median_CJTP = median(customer_journey_time_performance)) 
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Table 8 

Output for Peak and Off-Peak dataset medians, from CJTP_P_Stats and CJTP_OP_Stats. 
Median Peak CJTP Median Off-Peak CJTP 

0.6527189 0.6861122 

After exporting the bus metric datasets to Microsoft Excel format, I added them to the contents 

of the ArcGIS project, and created a table join between each of the CJTP “Merged” datasets and 

the QRoutes layer. This primarily allowed for the bus data to be symbolized on the map, but also 

(by unchecking the Keep all input records option in the tool) excluded all routes that were not in the 

CJTP datasets from the resulting polyline layers. This was a convenient way to remove all routes 

except the Queens routes I am studying, which resulted in 110 total routes plotted on the map.5 

3.4.1 Summarizing by CD 

Although the bus route layer is spatial data, CJTP data lacks spatial awareness along the routes it 

applies to. This means that one route stretching from hypothetical point A to point B has one static 

CJTP value at any given point in time, which does not change along the route. 

This created the need for a method of assigning CJTP values to CDs without having location-

specific CJTP data. The compromise I developed accounts for all routes that intersect a CD, then 

calculates the median CJTP percentage between these routes, and assigns the resulting value to that 

CD. 

I performed a Pairwise Intersect between the QRoutes and the clipped CDs layer. A key feature 

of Pairwise Intersect is how “features or portions of features that overlap between the input feature 

layers or feature classes will be written to the output feature class” (Esri, 2024) . The tool split each 

unified bus route into one new segment within each CD the route intersects. 

I wrote another R script to filter metrics for each CD individually, based only on buses within 

the list of routes that intersect. Values for spring and fall, as well as Peak and Off-Peak fare periods, 
5I altered the route_id values for SBS routes and buses Q6 through Q9 in the CJTP “Merged” datasets because 

their default labels (ex. “Q06” instead of Q6) had to be changed to match with the routes labels in the MTA-provided 
routes.txt file. Following this fix, the Add Join feature was successful with all 110 records each time it ran. 
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were retained and kept separate. Below is an example of the process for CD 3, using spring Peak 

data: 

cd3_unique_lines <- Centroid_Spr_P %>% 

filter(official_cd_num=="3") 

unique(cd3_unique_lines$route_id) 

rm(cd3_unique_lines) 

#Spr_P 

cd3_Spr_P <- CJTP_Spr_P %>% 

filter(route_id=="Q48" | route_id=="Q66" | route_id=="QM20") %>% 

# Values from unique(cd3_unique_lines$route_id)—Shortened for example 

# Above is all unique values discovered from cd1_unique_lines 

summarize(mean_CJTP = mean(customer_journey_time_performance), 

median_CJTP = median(customer_journey_time_performance), 

min_CJTP = min(customer_journey_time_performance), 

max_CJTP = max(customer_journey_time_performance), 

mean_cust = mean(number_of_customers), 

median_cust = median(number_of_customers) %>% 

mutate(Season = "Spring", 

Period = "P", 

CD = "3") 

I bound 4 new data frames for each season/fare period combination into one data frame for each 

CD, then I bound all CD data frames into one “CDMetrics” data frame. This data frame was split 

into 4 separate data frames for the different season/fare period combinations: 

cd3 <- rbind(cd3_Spr_P, cd3_Spr_OP, cd3_Fall_P, cd3_Fall_OP) 

# Bind all CD data to 1 metrics sheet 
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CDMetrics <- rbind(cd1, cd2, cd3, cd4, cd5, cd6, cd7, cd8, cd9, cd10, 

cd11, cd12, cd13, cd14) 

#Sort into standard seasons + periods sheets for export to Excel: 

CD_Spring_P <- CDMetrics %>% 

filter(Season=="Spring" & Period=="P") 

CD_Spring_OP <- CDMetrics %>% 

filter(Season=="Spring" & Period=="OP") 

CD_Fall_P <- CDMetrics %>% 

filter(Season=="Fall" & Period=="P") 

CD_Fall_OP <- CDMetrics %>% 

filter(Season=="Fall" & Period=="OP") 

I exported these data frames using writexl, added the tables into the ArcGIS project, then joined 

each with the CDs layer to symbolize CJTP percentage per CD (see Figures 7 and 8). 

4 Analysis 

4.1 Illustrating the seasonal and spatial distribution of flooding in Queens 

To review what was outlined in the Methodology section, I selected spring and fall as the control 

and experimental study months respectively because the latter represents an abnormal month with 

recorded major flooding, while the former featured far less severe weather while being a compara-

ble season. This is reflected by the 2023 precipitation data from Queens (NYS Mesonet, 2024), seen 

in Figure 5. In the fall, a major spike in total precipitation appears over September (438.1mm pre-

cipitation) that overshadows the smaller spikes present in January (165.08mm), April (277.04mm), 

and December (247.43mm). 
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Figure 5. Sum and average precipitation per month in 2023. 

For 311 flooding locations to be an accurate identifier of flooding conditions in 2023 overall, 

they would have to follow the trends of rainfall throughout the year. This is the case within these 

datasets: for each month that observed an increase in precipitation, that month saw a corresponding 

increase in flooding locations. 

Table 9 

Total precipitation vs. unique flooding locations (February and August included for context). 
Month Total Precipitation (mm.) Flooding Locations 

February 55.99 33 
March 127.01 51 
April 277.04 101 
May 65.61 81 

August 252.84 113 
September 438.1 232 
October 149.3 76 
November 87.82 28 
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Table 10 

Total precipitation vs. unique flooding locations, % Change 
Month Total Precipitation (% Change) Flooding Locations (% Change) 

March 126.84 52.94 
April 118.12 107.69 
May -76.32 -25.00 

September 73.27 111.50 
October -65.92 -64.85 
November -41.18 -64.29 

Three of the six studied months (March, April, and September) saw increases in flood locations 

coinciding with increases in precipitation. April is of particular note because the % Change in both 

statistics for that month are so similar to each other, with precipitation increasing by 118.12% over 

March and flooding locations increasing by 107.69%. September saw a disproportionately high 

increase in flooding locations (+111.50%) compared to its increase in rainfall (+73.29%). March 

saw a disproportionately low increase in flooding locations (+52.94%) compared to its increase in 

rainfall (126.84%). The other three months (May, October, and November) saw decreases in both 

statistics. October saw near-parity in the % Change between precipitation (-65.92%) and flooding 

locations (-64.85%) that month. May and November did not record the same degree of parity, but 

nonetheless recorded decreases in both statistics. 

Relative change is important because it helps to identify the association between precipitation 

and flooding locations, but also which months were outliers relative to other months of the year. 

For context, September alone had a 111.50% increase in flooding locations (239 total) than August 

(113), the next most flooded month by total locations, which highlights its nature as a flooding 

outlier. April was also an outlier by this logic, seeing a 107.69% increase in flooding locations (101 

total). By total unique flooding locations, September, April, and October (76 total) experienced the 

most severe flooding within the study time frame. In contrast, May (81), March (51), and November 

(28) recorded the fewest flooding locations. 
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Figure 6. Unique locations of flooding reported to NYC311, by Community District. Each CD is 

labeled with their official numbers (e.g. “14” represents CD 14, or the Rockaways). 

Table 11 

Flooding Locations by CD, spring 2023 and fall 2023. Bold indicates CD 5, the only CD where 
flooding locations decreased between seasons. 
Community Distrct (CD) Flooding Locations 

Spring 2023 Fall 2023 

1 11 17 
2 11 22 
3 16 18 
4 6 13 
5 26 13 
6 6 11 
7 26 29 
8 10 14 
9 8 14 
10 17 33 
11 20 21 
12 19 36 
13 37 46 
14 19 46 

36 



Portraying flooding locations on a map allowed me to identify CDs where flooding changed 

between seasons. The scale uses a custom Natural Jenks-based classification adjusted to include 

the minimum of both seasons combined in the lowest class, and the maximum of both seasons in 

the highest class. 

A near-overall increase in unique flooding locations is clear. From spring to fall, 10 CDs 

recorded increases in flooding locations. 3 CDs recorded little change in flooding locations (CDs 3, 

7, and 13 were in the same classification in both seasons), while only CD 5 experienced a decrease 

in flooding locations. The CDs with increased flooding locations are not all along shorelines; only 

5 CDs that changed to a higher classification in the fall (these being CDs 1, 2, 10, 11, and 14) 

directly touch the East River, Jamaica Bay, or Long Island Sound. Many of the CDs that recorded 

an increase in locations are inland (CDs 4, 6, 8, 9, and 12). This may signify that flooding from 

overwhelmed drainage systems during storms are contributing more to flooding in inland CDs than 

short-term rising river tables. 

4.2 Identifying the impact of flooding on Queens buses 

For bus performance to reflect reported flooding locations in Queens, we would need to observe an 

overall decline in bus performance between spring and fall 2023 or performance declines in CDs 

that observed increased flooding locations over the same time frame. Establishing an association 

by month between flooding locations and bus performance would also serve as evidence for their 

connection. During the Peak fare period, median performance ranged from as high as 71.5% on 

time (in April) to as low as 61.0% on time (in September) over the study period. In the Off-Peak, 

median performance ranged from 74.1% (April) to 62.6% (September). September, October, and 

November fell below the overall Peak and Off-Peak period medians of 65.3% on-time and 68.6% 

on-time, respectively. Simultaneously, the months with the best performance were all in the spring; 

March, April, and May all experienced above-median bus performance. 
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Table 12 

Median % CJTP by month, Peak and Off-Peak (February and August included for context). 
Month % Peak % Off-Peak 

February 72.0 75.8 
March 69.2 72.1 
April 71.5 74.1 
May 66.0 69.0 

August 74.9 73.6 
September 61.0 62.6 
October 61.4 65.5 
November 62.9 65.0 

Overall Median 65.3 68.6 

Table 13 

Change in median % CJTP, month to month. 
Month Change (Percentage Points), Peak Change (Percentage Points), Off-Peak 

March -2.80 -3.70 
April 2.30 2.00 
May -5.50 -5.10 

September -13.90 -11.00 
October 0.40 2.90 
November 1.50 -0.50 

When comparing bus performance data to flooding data for overall months, some months show 

overall associations but a concrete association across the study is unclear. Studying the % change 

of CJTP against that of total precipitation and flooding locations per month, March and Septem-

ber saw both declines in Peak/Off-Peak period CJTP and increases in precipitation and flooding 

locations. Additionally, October and November (in Peak hours) saw minor improvements in CJTP 

as precipitation and flood locations lessened (November Off-Peak saw a marginal -0.5% decrease 

from October Off-Peak). This makes 4 months that mostly follow the negative association I hy-

pothesized between bus performance and flood locations. 

The 2 months that do not fit my hypothesis, April and May, contrastingly depict a positive trend 

between rainfall, 311 flooding locations, and bus on-time performance. As precipitation increased 

by 118.12% in April and flooding locations increased by 107.69%, CJTP rose by 2.3 percentage 
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points in Peak hours and 2 percentage points in Off-Peak hours. Inversely, May observed a 76.32% 

decrease in precipitation and 25% decrease in flooding locations, but a corresponding 5.5 point 

decline in Peak CJTP and a 5.1 point decline in Off-Peak. 

Noting the change in CJTP between Peak and Off-Peak fare periods, each month displays better 

performance in the Off-Peak. This is a change between +1.60 and +4.10 percentage points, with a 

median improvement in the Off-Peak of +2.75. I interpreted these results as a suggestion of how 

increased traffic congestion during Peak hours may affect the data as an extraneous variable. The 

maximum improvement of +4.10 suggests that the reduction of traffic in Off-Peak hours does not 

significantly impact bus performance data, as this small of a difference only marginally improves 

bus timeliness. 

Table 14 

Change in % CJTP between Peak period and Off-Peak period. 
Month Change (Percentage Points), Peak to Off-Peak 

March 2.90 
April 2.60 
May 3.00 

September 1.60 
October 4.10 
November 2.10 

Median Change 2.75 

Mapping bus performance by CD enabled a spatial and visual analysis of where CJTP changed 

between spring and fall, and how that spatially relates to changes in flooding. With the exception 

of CD 14, spanning the Rockaways, every CD in Queens saw drops in bus performance during 

the Peak period in the fall. This includes CD 5, which was the only CD to observe a decrease 

in its flood location total between seasons. In the fall, CDs 2, 4, 5, 6, and 10 observed the worst 

bus delays out of all CDs—none recorded more than 44.1% of their buses being on-time, with the 

lowest being CD 5 at only 38.4%. CDs 14 and 13 recorded the highest Peak % CJTP at 70.6% and 

70.6% respectively. 

Of the coastal CDs that recorded some of the worst bus performance metrics in the fall, some 
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were mentioned previously as CDs that border the East River or Jamaica Bay. Out of these, CDs 

2 and 10 show under 45% timeliness (Peak), while buses in CD 1 were only 57% on-time. Mean-

while, CDs 11 and 14, which touch the Long Island Sound, still experienced bus performance 

decline, but to a lesser degree. 

Figure 7. Bus On-Time Performance (CJTP) in the Peak fare period, by Community District. 

Darker shades of orange represent lower bus on-time performance. 

When comparing these maps to the flooding location maps, I noticed the concentration of loca-

tions I observed in inland CDs does not appear to be reflected in the inland bus delays, which were 

concentrated on CDs 4 and 6 even though location increases were concentrated in CDs 4, 8, and 

9. Instead, the Peak CJTP map appears to show a steep gradient where bus performance improves 

moving from western CDs (1-6, 9, 10) to eastern CDs (7-8, 11-13). 
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Figure 8. Bus On-Time Performance (CJTP) in the Off-Peak fare period, by Community District. 

Darker shades of orange represent lower bus on-time performance. 

However, in the Off-Peak period, every CD in Queens saw poorer bus performance regardless of 

local changes in the number of flood locations. This decline appears more evenly distributed across 

the borough than what Peak hours showed, shifting the impact on buses to be less concentrated on 

the western CDs. Notably, inland CDs such as 4, 6, and 8 stand out again with bus performance of 

60.5% and lower in the fall. 

Considering the complete change in CJTP gradient between the Peak and Off-Peak maps, I 

questioned if this was due to traffic congestion being a more prominent influence upon the Peak 

data than the Off-Peak data. I also noticed that when the Peak period CJTP values for each CD are 

sorted low-to-high, the bottom 6 CDs remain the same between spring and fall (CDs 5, 2, 6, 4, 10 

and 9, in order from lowest to highest CJTP). In the fall, these are also the lowest ranking during 

Off-Peak hours. 

This could be interpreted as a sign of a consistent baseline of bus performance between those 

CDs, regardless of season, traffic, or other influential variables. However, because their CJTP val-

ues are significantly lower in the fall, it provides evidence that a variable affecting bus performance— 
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perhaps flooding—changed in the fall and is causing bus performance declines. 

Figure 9. CDs by Peak hours median % CJTP, spring and fall, sorted lowest to highest by Peak 

CJTP. 

Figure 10. All median % CJTP Values by CD, season and fare period. 

Additionally, the spatial gradient of bus on-time performance for Peak hours (see Figure 7) 

shows more drastic performance degradation in the CDs of Queens that are west of Grand Central 

Parkway and the Van Wyck Expressway, which bisect Queens approximately at its geographic 

center (CDs 1, 2, 3, 4, 5, 6, 9, 10). during spring and fall. It happens that the 6 lowest performing 

CDs in both seasons (CDs 5, 2, 6, 4, 10 and 9) are west of this divider as well (referred to from here 
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as “western Queens”). This piqued my interest, as we do not have a certain reason for this contrast 

with “eastern Queens” (CDs 7, 8, 11, 12, 13) and the Rockaways (CD 14), which fare far better in 

bus on-time performance throughout all scenarios. 

4.3 Understanding variation through R-Squared values 

Finally, I performed multiple R-Squared analyses to understand variation between the rainfall, 311, 

and bus datasets. Calculating the variation between the monthly sums of rainfall (independent vari-

able) and monthly sums of flooding locations (dependent variable), along with variation between 

monthly average rainfall and monthly flooding locations, yielded the results shown in Figure 11. 

Figure 11. R-Squared comparisons between Precipitation (Sum/Daily Average) and Flooding Lo-

cations. 

After establishing the overall temporal variation, I aimed to understand how flooding may ex-

plain the variation of bus performance at a CD level. I approached this question by solving for 
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R-Squared between the sum of flooding locations (independent variable) and recorded bus on-time 

performance within each CD (dependent variable), at both seasons and fare periods (see Figure 

12). R-Squared values based on the association of 311 locations and bus on-time performance at 

a Community District level depict statistically significant and moderate relationships in fall 2023, 

depending on fare period. I established how this correlation was stronger in fall (0.701 Off-Peak, 

0.413 Peak) than spring (0.160 Off-Peak, 0.238 Peak). Statistical significance in the CD-level data 

implies that there is a strong seasonal and localized correlation between flooding and bus perfor-

mance, and far more explanatory of conditions in the fall. 

Figure 12. R-Squared comparisons between Spring and fall 2023, Peak vs. Off-Peak. 

The spatial and total concentration of delays illustrate a more even spread of flood locations 

across Queens in the Off-Peak fare period, with no CDs that appear to show outliers in bus on-time 

performance. Data from Peak hours depicts even more extreme deficits in performance, particu-

larly in western Queens. In hopes of understanding the apparent notable difference between bus 

on-time performance western and eastern Queens, I also opted to calculate R-Squared between 
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flooding locations and bus-on-time performance per CD separated into sample groups of western 

Queens and eastern Queens (see Figure 13). I identified very high statistical significance in eastern 

Queens across both fare periods that was not identified in western CDs. The association in eastern 

Queens CDs yielded an R-Squared value of 0.918 (fall, Peak) and 0.8 (fall, Off-Peak), both far 

more significant than any correlation in western Queens or the spring reflected. 

Figure 13. R-Squared comparisons between Western and Eastern Queens. 
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5 Takeaways 

5.1 Implications 

All 6 months in this study reflect a positive association between precipitation and NYC311 flooding 

locations. By month, September recorded the highest amount of rainfall and the largest prevalence 

of flooding locations. By season, fall 2023 observed greater rainfall and flooding than the spring. 

While my hypothesis stated that areas along the coastline would experience the brunt of flooding’s 

effects, the reported locations of street floods seem to indicate a more nuanced result that depicted 

flooding increases in most coastal and inland communities during the fall of 2023. Based on the 

distribution of flooding locations reported to NYC311, this study established that between spring 

and fall, the areas in Queens at risk of flooding changed. In the fall, there was a substantial increase 

in flooding locations across all CDs except CD 5. Most of the locations were concentrated in 

northeastern Queens (CDs 7 and 11) and southeastern Queens (10, 12, and 13). 

Given that the number of flooding locations increased across nearly all of Queens CDs in fall 

2023, and that there is a positive association between rainfall and flooding location amounts, my 

findings confirm those of Agonafir et al. (2021) and Negri et al. (2023): that there is quantitative 

evidence for NYC311 flooding locations being associated with total precipitation amounts, and 

vice-versa. This is also supported by the strong explanatory relationship I derived between rain-

fall and 311 flooding locations per month, shown by the R-Squared values of 0.838 (when using 

monthly rainfall sums) and 0.834 (when using monthly rainfall averages). 

The association I identified between flooding and bus performance in fall 2023 largely reflected 

my original hypothesis of a negative association. All three months in the fall (September, October, 

and November) and only one month in the spring (March) recorded a negative association between 

bus performance and flooding locations. It is important to note that September was consistently 

the worst month for bus performance in both fare periods, considering the severity of flooding on 

September 29 which exceeded all other weather events in 2023. While my analysis of fall showed 

mixed associations between flooding and bus performance, the spring months of April and May 
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showed a positive association between the variables while March reflected the negative association. 

Notably, April recorded the best bus performance, even though it was not the driest month in this 

study. Spring 2023 also contrasted fall 2023 by reflecting relatively low R-Squared values between 

flood prevalence and bus performance. From one point of view, this contrast could be caused by 

how ground-truth rainfall (and thus, potential flooding) was more severe in fall 2023 over spring 

2023, which is supported by September’s anomalous rainfall total (NYS Mesonet, 2024) as well 

as journalistic and citizen reports of September 2023 flooding (Blackmore, 2024; Offenhartz et 

al., 2023). From another perspective, lower precipitation amounts in one month (such as May, 

which only recorded 65.61 mm. of precipitation) may cease to impact bus performance once rain 

decreases below a certain amount, implying that in spring there were factors other than rainfall 

which became the primary drivers of on-time performance metrics. 

My findings imply the existence of at least one underlying variable that increased the number 

of street flooding locations reported to NYC311, and at least one underlying variable that decreased 

bus on-time performance throughout fall 2023. Although other unstudied variables could be cul-

pable (which I address in the Limitations below), there are 3 particularly compelling reasons for 

flooding to be the driving cause of fall’s bus delays: 

1. The existing body of literature (particularly Suarez et al., 2005, Chang et al., 2011, Chen 

et al., 2015, Singhal et al., 2014, and Abenayake et al., 2022), which has established how 

flooding hinders surface transportation, in past floods and computer-simulated floods; 

2. My analysis of seasonal and localized Community District data in this study, which estab-

lished a moderate correlation between flood prevalence and bus performance in the fall Off-

Peak period, and a statistically significant correlation in both fare periods across eastern 

Queens versus Community Districts west of the Van Wyck Expressway; 

3. My comparison of Peak and Off-Peak and spatial data in fall 2023 which identified decreases 

in bus performance across fare periods with only marginal differences in % Change between 

these fare periods—signifying that impacts to bus performance in the fall are not explainable 
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by traffic congestion alone. 

This study provides evidence of a correlation between flooding and bus performance, with 

statistical significance in eastern Queens, that can be used by future studies to establish a concrete 

causal relationship between these variables using ground-truth data. 

5.2 Limitations 

I conceived some possible limitations to this study while authoring it, and concluded that its biggest 

limitations are the lack of accessible and reliable ground-truth data. This particularly includes the 

lack of certainty to how extraneous variables may affect this 311 and bus congestion data. 

For example, spatial bias and under-reporting in 311 reporting was previously stated as a con-

cern that this study was designed to mitigate, by mapping unique locations of 311 reports. While 

this eliminated duplicates from the dataset, there is no way to eliminate reporting bias entirely with-

out a thorough comparison against ground-truth data that, currently, is not available for flooding in 

NYC. 

Another extraneous variable that is missing reliable ground-truth data is traffic, and the amount 

of congestion that may be impacting the data presented here. Obtaining access to hourly traffic vol-

umes for individual streets in Queens could allow for the impact of traffic congestion on individual 

bus routes to be analyzed. Simultaneously, comprehensive traffic data could help us understand 

whether traffic congestion is the main driver behind western Queens’ long Peak period bus delays, 

since the flooding-bus performance relationship was deemed low in that region by my R-Squared 

analysis. Previously, traffic volume data for 90 streets in Queens from the NYC DOT (recorded by 

Automated Traffic Recorders) was publicly accessible through the NYC Open Data portal (NYC 

Department of Transportation, 2022). This dataset provided counts of vehicles crossing key roads 

in Queens, aiming to record traffic volume changes every 15 minutes throughout each year. 

I most recently used this data for a separate project in 2023, comparing localized traffic con-

gestion with bus individual bus route performance in Queens. However, in mid-2024 the version 

of this dataset available online was shrunk from the 27,190,511 rows that were in the 2022 version 
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(spanning years 2000 to 2023) to 1,673,725 rows (spanning years 2000 to 2024) (NYC Depart-

ment of Transportation, 2022). In correspondence with a representative from the NYC DOT in 

mid-2024, I was told that some of these rows were “removed in the most recent update was due 

to errors in the data,” while other rows were removed due to “inflated rows because the data was 

uploaded multiple times to rectify previous errors” (Email Correspondance with Representative 

from the NYC Department of Transportation, 2024). Due to these changes, the number of streets in 

Queens that had traffic volume counts decreased from 90 to just 10 total. I deemed that 10 streets 

would not be enough to extrapolate traffic counts, and thus congestion, across our entire study area. 

I opted not to use the source, despite being ground-truth data, due to these pitfalls. As of November 

7, 2024, the dataset has only 1,712,605 rows and has not restored all 90 Queens streets that were 

previously included. 

5.3 Future Steps and Solution Components 

In the future, researchers studying the intersection between flooding and public transportation 

should consider studying larger time frames than this study was able to accomplish. Approach-

ing the issue with a larger study time frame would allow us to identify if an association between 

floods and delays exists outside of 2023, is limited to specific months and seasons, or has become 

stronger over time with the progression of anthropogenic climate change. Additionally, analyzing 

a greater pool of data could create the basis for more accurate predictive modeling and help public 

officials plan their climate change resilience efforts more strategically. 

The road to more thorough studies in this field will benefit greatly from better ground-truth data. 

For example, NYC DOT restoring the accuracy of the Automated Traffic Volume Counts dataset, 

and all 90 Queens streets that were previously logged (NYC Department of Transportation, 2022), 

would allow future researchers to apply ground-truth traffic data to transportation studies of NYC, 

and increase our overall understanding of how traffic impacts public transportation. 

One promising step towards a ground-truth abundance for flood and transit researchers is the 

project FloodNet NYC, a joint research and open data project between NYC, New York Univer-
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sity, and the City University of New York that installs ultrasonic flood monitoring range-finders 

in several NYC communities. (FloodNet NYC, 2024). One of these range-finders records the 

distance between itself and the road surface continuously after being installed above a street or 

sidewalk; if said street or sidewalk floods, the distance-to-surface recorded by the range-finder’s 

will decrease, and the FloodNet NYC servers process the estimated depth of flooding directly from 

that distance data (FloodNet NYC, 2024). This data is publically accessible for free at their web-

site, https://floodnet.nyc. While by the end of 2023, there were 25 streets equipped with FloodNet 

range-finders in Queens, as of November 2024 that number has risen to 82. FloodNet NYC data 

shows potential for being used in a similar study to this one, as the larger their roster of streets with 

range-finders grows, the more thorough ground-truth data will be available to researchers. 

This study focused on analyzing how flooding influenced bus transportation in 2023. Fu-

ture studies should look towards answering the “why”: identifying the variables that explain why 

Queens buses appear to be so much more delayed in time periods and areas with more reported 

flooding locations. I hypothesize that the topography of Queens, combined with drainage systems 

that are under-equipped for recent flooding events and intensities, might make certain areas more 

vulnerable to becoming rainwater catches that others, leading to floods and associated bus delays. 

I also encourage future studies to take into account the effectiveness of dedicated bus infrastructure 

in NYC as flood-resilient infrastructure. 

Flooding is not an entirely natural hazard. A flood may begin with excessive rainfall, but its 

ability to overload drainage systems, pool on impermeable surfaces, and interfere with urban settle-

ments is a symptom of human-made infrastructure ill-equipped to handle floods of this magnitude. 

The findings of this study support the idea that protective measures against flooding to improve 

bus delays are worthwhile to improving public transit and urban residents’ mobility overall. 

I noted earlier in this paper that the MTA’s redesign plan for the Queens bus network does 

not include any mentions of flooding, weather, climate change’s effects, or what can be done to 

protect public transit against severe weather. By doing this study, I determined that 3 of the 4 

main priorities set by the MTA in its redesign proposal could be addressed in significant ways with 
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greater investments in flood infrastructure (Metropolitan Transportation Authority, 2023b): 

1. Reliable Service can be addressed by building bus infrastructure that is more resistant to 

floods, thereby reducing the risk of bus unreliability caused by flooding. 

2. Faster Travel can be a positive externality of improving bus delays, as reducing the number 

of buses stuck in flood conditions could decrease bus bunching and move passengers around 

the city faster. 

3. Better Connections can be created when passengers don’t have to wait on a flooded street or 

sidewalk, while fewer delays would mean shorter wait times to board a connecting bus. 

6 Supplement: Exploratory Field Studies 

6.1 Using Field Studies to Illustrate Queens Road Infrastructure 

I believed that exploring Queens based on the map of the 311 dataset would yield an insightful 

list of street conditions that may or may not contribute to flooding and the associated delays. This 

could provide a starting point for future studies aiming to identify the physical causes of flooding-

triggered ground transportation delays, whether in Queens or other places. 

As a supplemental effort to understand the ground conditions of streets in Queens, I conducted 

field studies with Prof. Campos and Prof. Cousins at multiple sites on October 8, 2024. This was 

an exploratory effort, and not conducted to draw conclusions on the causal effects behind street 

flooding or bus delays. However, I modeled my methodology off the good practice guidelines for 

fieldwork presented by Bosco & Moreno (2009) by making my observation process as systematic as 

possible, and exercising reflexivity with my position as an individual who does not live or commute 

directly in the communities I draw conclusions on (Bosco & Moreno, 2009). 

Taking inspiration from Bosco & Moreno (2009)’s descriptions of fieldwork, I aimed to conduct 

an “open-ended, interpretive” observation of systematic elements within the urban landscape (p. 

119). Based on these principles, I developed an original methodology for choosing Locations of 
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Interest (LOIs) to conduct field observations. First, I limited the LOIs only to sites that are identified 

as flood locations in the spring or fall within our dataset. I narrowed down the selection further to 

only identify locations that are also intersected by at least one Queens bus route (with at least one 

bus stop on the same block). Although no conclusions were to be drawn, I felt that limiting LOIs 

to areas with reported flooding and bus route(s) was important to keep locations relevant to this 

study’s overarching topic. 

I further narrowed down the criteria by running the Kernel Density tool on both the spring and 

fall 311 location datasets plotted in ArcGIS Pro. This allowed me to only select LOIs located within 

Kernel Density clusters. Since Kernel Density calculates the density of points in a given dataset, 

I used it to illustrate which LOIs were located within or near clusters of other reported flooding 

locations—the logic being that denser clusters of flood locations were assumedly more vulnerable 

to flooding, and thus the road conditions observed at these LOIs may reveal larger trends about 

local ground conditions.6 Attention was also given to whether a notable body of water was located 

near each LOI and protections against their overflow onto the roadway in the case of inundation. 

Following this process, I identified 4 LOIs that reflected all of my limiting criteria, as shown in 

Table 15. The resulting list of LOIs reflect a well-spread distribution across Queens, which provided 

a broad scope for my observations and a variety of ground conditions to analyze. 2 locations (the 

Jackson Heights and College Point) are closer to the northern coast (the former being near Flushing 

Bay, and the latter bordering Herman A. MacNeil Park, which is on the East River). 1 location is 

southern (Rosedale), intersecting Brookville Park, and the final location (Jamaica Hills) is roughly 

central in the borough and landlocked. 
6I ran the Kernel Density tool for spring and fall with an environmental output cell size (about 280.36), the Planar 

method, and densities as output cell values. 
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Figure 14. Kernel Density maps for 311 flooding locations (spring 2023 on left, fall 2023 on right). 

Circular points depict unique flooding locations, and triangles depict the LOIs listed in Figure 15. 

Table 15 

Locations of Interest (LOIs) and their notable properties. 
Cross-street (and Date of 311 Bus CD Highest % Lowest % 
neighborhood) Report(s) Line(s) CJTP CJTP 

Astoria Blvd, 9/29/2023 Q19 3 69.0 (Spring, 57.9 (Fall, 
between 86th and Off-Peak) Peak) 
87th St (Jackson 

Heights) 
Poppenhusen Ave 4/30/2023 Q25 7 75.2 (Spring, 63.5 (Fall, 
& College Place Peak) Peak) 
(College Point) 
147th Ave, 9/18/2023, Q111 13 77.6 (Spring, 69.6 (Fall, 
intersecting 9/30/2023 Peak) Off-Peak) 

Brookville Park 
(Rosedale) 
Gothic Dr & 10/15/2023 Q30, 8 71.5 (Spring, 60.1 (Fall, 
Homelawn St Q31 Off-Peak) Peak) 
(Jamaica Hills) 
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Citing examples of stormwater management conveyed in the NYC Mayor’s Office’s Stormwa-

ter Resiliency Plan (NYC Mayor’s Office of Resiliency, 2021) and the NYC DEP’s City Stormwater 

Manual (NYC Department of Environmental Protection, 2024b), I sought the following examples 

of design that would affect flood management: 

1. Drainage (or lack thereof): including manholes and catch basins connected to the Separate 

Storm Sewer System (NYC Mayor’s Office of Resiliency, 2021), 

2. Permeable surfaces (or lack thereof): including but not limited to curb strips (grade-separated 

planters along the side of a street/sidewalk), dedicated bioretention planters, and porous pave-

ment (NYC Department of Environmental Protection, 2024b), 

3. Engineered protection from inundation in the case of high tide and river table rise (NYC 

Mayor’s Office of Resiliency, 2021). 

To practice reflexivity and minimize my personal bias, my observations were categorized strictly 

on these categories. Although I pulled outside sources to draw hypotheses and extra detail into my 

analysis, I had not reviewed these sources prior to conducting the field studies. 

6.2 Drainage 

In our field studies, we observed multiple ways drainage is arranged on Queens streets. All of these 

implementations were catch basins embedded into sidewalk curbs, but their differences evoked 

questions around their strategic placement. 

At the Jackson Heights LOI, one catch basin was embedded into the curb directly on the east-

bound side of Astoria Blvd, at the corner of 87th St. Another catch basin was observed on 86th 

St, directly after the turn off eastbound Astoria Blvd. Both of these basins were placed on slight 

downward grades, causing them to be lower than the relatively-flat surrounding road grade. 

NYC’s Street Design Manual states the criticality of street grade in resolving “ponding or flood-

ing issues.” (NYC Department of Transportation, 2020, p. 61) I hypothesize that this downward-

sloped grade helps direct runoff from Astoria Blvd and 86th St into the catch basin more effectively. 
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Figure 15. Catch basin on Astoria Blvd, adjacent to 87th St. 
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Figure 16. Catch basin on 86th St off Astoria Blvd. 

This may be especially relevant on Astoria Blvd, a 6 lane road (8 lanes including street parking) 

that appears to have a very flat grade. If the relatively flat grade of this road caused water to pond 

when flooding reportedly occurred, a method for directing water into the catch basin would be even 

more necessary. 

We observed 5 total catch basins at the College Point LOI, all of which were placed at the 

intersection of Poppenhusen Ave and College Place. Two basins are placed directly across from 

each other on Poppenhusen Ave, following a left turn from College Place, while two others were 

arranged similarly following a right turn. Additionally, 9 sewer manholes were placed at the inter-

section, with 8 embedded within the road and 1 within the sidewalk. 

Even though these total to 14 drainage utilities installed within a 50 foot radius of the Poppen-

husen Ave/College Place intersection, it was understandable that flooding had still been reported 

considering how rainfall amounts exceeded the 90th percentile so frequently in 2023. 
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Figure 17. 2 of 5 catch basins on Poppenhusen Ave, at intersection with College Place. 

Figure 18. All 5 catch basins and 8 street manholes at the intersection of Poppenhusen Ave and 

College Place. Manholes are scattered throughout the intersection. 
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The Jamaica Hills LOI featured 3 water and sewage manholes, all at the pedestrian crossing 

across Gothic Dr. However, we observed no catch basins for drainage in the intersection or im-

mediate area. If this constitutes insufficient drainage, that may have contributed to the reported 

flooding that occurred here in October 2023. 

Figure 19. Homelawn St from its intersection with Gothic Dr, facing northeast. One sewer manhole 

and one ConEd manhole are visible in the far-left; otherwise, no catch basins were observed. 

Finally, the stretch of 147th Ave by Brookville Park at the Rosedale LOI similarly depicted 

catch basins being outnumbered by manholes. While there were 4 manholes along the road between 

Brookville Blvd and 232nd St, we only observed 1 catch basin on the westbound side, just next to a 

roughly 3-foot tall brick barrier that separates the park’s Conselyea’s Pond from the roadway. This 

effectiveness of this basin at allowing water to flow in was questionable, however, considering the 

debris scattered on its surface (see Figure 20). A debris-clogged catch basin can tamper with water 

infiltration or block it entirely, which could contribute to localized street flooding issues if other 

drainage systems cannot compensate for the clogged catch basin. This is a known issue in Queens, 

as NYC311 also records complaints of clogged catch basins (Agonafir et al., 2021). 
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Figure 20. The catch basin on 147th Ave by Brookville Park. 

Figure 21. 2 manholes on 147th Ave by Brookville Park. 
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6.3 Permeability, Impermeability, and Curbs 

In Queens, October 8, 2024 was a sunny day with an average temperature of 62°F and no recorded 

precipitation. These conditions followed a stretch of 8 days without precipitation, so we did not 

expect to find even minor ponding on the roads. 7 However, we identified many examples of 

impermeable surfaces and curb design that could propagate runoff ponding on the roadway. 

For example, at the College Point LOI, we found evidence of ponding at the curb where College 

Place terminates at the three-way intersection. The liquid appears to have spread along the curbside, 

although its origin point is unknown. 

Figure 22. Ponding in College Point on Poppenhusen Ave, by Hermon A. MacNeil Park. A curb 

strip is raised just above the area with ponding. 

7Meteorological Fall 2024 was much drier than fall 2023. Queens experienced a complete absence of rainfall above 
0.01 inches from September 30 to November 20. (NWS, 2024c) 
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I noted that the curb strip is not able to absorb this liquid because it is raised from the street. 

While these curb strips can retain rainfall (NYC Department of Environmental Protection, 2024b), 

the curb blocks any flow of runoff from the street into the strip (except for circumstances where the 

volume of runoff exceeds the height of the curb). While this design may helps to protect the plants 

in the curb strip from harmful or polluted runoff, it may be worth investigating whether curb strips 

that are flush with the roadway could absorb and treat a greater volume of runoff in a street flooding 

event. This would reflect the NYC Street Design Manual’s suggestion to keep “planted areas and 

stormwater source controls,” including curb strips, within their surrounding roadway instead of 

being separated (NYC Department of Transportation, 2020, p. 61). The soil of an effectively 

permeable curb strip also must not be so compacted that it “behave[s] like impermeable surfaces,” 

which is a recorded issue with urban soils due to urban construction activity (Qin, 2020, p. 1). 

Figure 23. The seawall at Hermon A. MacNeil Park from the perspective of the East River. The 

ramped entrance bisecting the wall is at the far-left of the image. 

Flood mitigation at College Point appears particularly important because of the neighborhood’s 

proximity to the East River, which Hermon A. MacNeil Park provides direct access to merely 125 
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feet from Poppenhusen Ave (at their closest distance). At MacNeil, a seawall was installed that 

faces the East River and divides the grassy area of the park from its sandy cove. 

Figure 24. The seawall at Hermon A. MacNeil Park, overlooking the East River (5’5” researcher 

for scale). 

The two sides of the park connect via a ramp and stairs bisecting the seawall, as the park and 

street level were elevated from the river stage on the day of our visit. Being elevated from the East 

River may better protect its residents in case of a heightened river stage. 

Our LOIs at College Point and Rosedale both illustrate permeable space through their proximity 

to parks; specifically MacNeil Park at College Point, and Brookville Park at Rosedale. MacNeil 

is a nearly 29-acre park bordering the East River that consists of mostly green space (with the 

exception of a playground and a baseball field), and 338 recorded trees (NYC Parks, 2024b). Since 

trees provide water retention and absorption through their leaves and roots (Qin, 2020), they add 

to MacNeil Park’s ability to mitigate runoff within the surrounding area. 

Brookville Park borders 147th Ave, which is a two-lane asphalt road with public parking space 

on the Brookville Park grounds. While this description of the road emphasizes its impermeability, 

the park shows much more potential for runoff mitigation. Brookville is a nearly 90-acre park 
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which features the large Conselyea’s Pond, over 1,100 mapped trees, and 25.2 acres of NYC Parks-

designated “Forever Wild” natural areas (NYC Parks, 2024a). This park likely provides the same 

types of water retention benefits of MacNeil Park but at a larger scale, as Brookville is a larger 

park with a greater tree population. Across 147th Ave, a series of tree planters are embedded in the 

sidewalk, providing greater water retention. However, future researchers should consider whether 

Conselyea’s Pond is particularly vulnerable to flooding from extreme rainfall events, and whether 

this negates the retention benefits provided by Brookville Park to the surrounding community. 

Figure 25. Trees and plants on the Astoria Blvd median. 

Medians were determined by the NYC Street Design Manual as an effective tool for building 

permeable space on roadways (NYC Department of Transportation, 2020). On Astoria Blvd in 

Jackson Heights, the road is divided by a median lined with several trees in planting beds. These 

beds are surrounded by tile that may allow water to infiltrate the ground below. Along with curb 

strips embedded in the sidewalk, this median provides some permeable space in between the highly-

63 



impermeable 6 lanes of asphalt road. The Jamaica Hills LOI showed even lower permeability, with 

minimal curb strips to aid drainage. 

6.4 Reflecting on Our Observations, Flooding, and Buses 

Studying the road infrastructure of our 4 LOIs in Queens revealed many noteworthy points about 

the state of the borough’s ability to flood mitigation and support reliable bus transportation. Im-

permeable surfaces are major contributors to the issue of urban flooding (Qin, 2020). This is why 

flooding is especially prevalent on city roads, which are often made of impermeable materials, 

lined by impermeable sidewalks, and surrounded by impermeable driveways or side roads (NYC 

Department of Transportation, 2020). Adding sufficient drainage and utilizing permeable space in 

an urban setting are two key components of flood mitigation strategy, as demonstrated by the plan-

ning being done in NYC (NYC Department of Environmental Protection, 2024b; NYC Mayor’s 

Office of Resiliency, 2021; NYC Department of Transportation, 2020). Preparations for extreme 

weather may only become more essential as climate change intensifies weather patterns and sea 

level rise. 

The association this study identified between greater flood prevalence and worse bus on-time 

performance, and particularly the strong R-Squared association found in eastern Queens (which 

includes our LOIs in College Point, Jamaica Hills, and Rosedale), suggest that flood infrastructure 

is vital to bus performance and reliability in this region of NYC. Future research on how these bus 

metrics can be improved strategically should explore the direct impact of drainage conditions and 

street permeability levels on this form of transportation. 
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Figure 26. A bus stop for the Q19 route on Astoria Blvd at Jackson Heights, near the catch basins 

we observed. 
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Figure 27. A bus stop for the Q25 route on Poppenhusen Ave at College Point. 

As shown in my analysis of the MTA’s redesign plan, overlap between the planning of bus 

infrastructure (e.g. bus lanes, transit signal priority) and flood infrastructure is not covered in the 

plan’s overview. However, I argue that a more holistic solution would be to construct new bus 

infrastructure with integrated flood protections, such as drainage with tolerance for greater rainfall 

amounts than 1.75 inches, or increased planters along bus lanes. 

Additionally, porous pavement is being implemented in select NYC areas, including at one 

location in College Point (NYC Department of Environmental Protection, 2024c), and has proved 

to be promising for use in flood mitigation strategies. By replacing traditional concrete on urban 

roadways, porous pavement allows water to infiltrate the ground from any point along the road, 

adding to the flood resilience potential provided by catch basins, permeable planting beds, and other 

methods of capturing rainwater (NYC Department of Environmental Protection, 2024c). Porous 

pavement could improve the permeability of urban roads in general, while having potential for 

integration in new bus infrastructure, allowing those projects to double as flood mitigation solutions 

without widening a thoroughfare with drainage or planters. 
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The NYC government reaffirmed the link between quality drainage and efficient transporta-

tion earlier this year, when it announced an investment of $51.8 million into Rosedale’s flood 

infrastructure to help “make transportation improvements in the area.” (NYC Department of Envi-

ronmental Protection, 2024a) Some of the existing infrastructure in this area was installed prior to 

1940, making it unable to withstand present-day rainfall levels. The new investment will include 

the construction of 92 catch bases, 13 storm chambers, over 2 miles of upgraded pipes for the water 

mains, new roads/curbs/sidewalks, and other improvements that will help relieve infrastructure in 

southeastern Queens. (NYC Department of Environmental Protection, 2024a) 

A holistic approach to improving flood protection and transportation has the potential to protect 

local residents from severe floods while improving conditions for traffic and buses. Therefore, 

further researchers should consider studying the intersectionality between flooding infrastructure 

and bus performance in southeast Queens and other regions. 

Figure 28. Workers installing porous pavement at a parking lot in College Point, Queens. 

(NYC Department of Environmental Protection, 2024c) 
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